Abstract

Single atomic Fe-N4 catalyst exhibits a great prospect for oxygen reduction reaction (ORR) and adjusting the intrinsic coordination structure and the carbon matrix structure effectively improves the catalytic activity. However, controlling the active site coordination structure and its surrounding environment at atomic level remains a challenge. In this paper, Fe-N3S1 and FeS sub-nano cluster were innovatively concatenated on S, N co-doped carbon matrix (SNC), denoted as FeS/FeSA@SNC catalysts, for modulating ORR catalysis performance. Both experimental measurements and theoretical calculations have confirmed that the local electron configuration of Fe center is modulated by this unique structure combination leading to optimized ORR kinetics. Based on this design, the synthesized FeS/FeSA@SNC delivers ORR activity with a half-wave potential of 0.9 V (vs. RHE), excelling that of commercial Pt/C (0.87 V) and the Zn-air battery (ZAB) with this cathode catalyst delivers a peak power density of 126 mW cm−2. This work presents a novel strategy for manipulating the single-atom active sites through control the local coordination structure and provides a reference for the development of novel efficient ORR electrocatalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call