Abstract
AbstractUsing cost‐effective fabrication methods to manufacture a high‐performance solid oxide fuel cell (SOFC) is helpful to enhance the commercial viability. Here, we report an anode‐supported SOFC with a three‐layer Gd0.1Ce0.9O1.95 (gadolinia‐doped‐ceria [GDC])/Y0.148Zr0.852O1.926 (8YSZ)/GDC electrolyte system. The first dense GDC electrolyte is fabricated by co‐sintering a thin, screen‐printed GDC layer with the anode support (NiO–8YSZ substrate and NiO–GDC anode) at 1400°C for 5 h. Subsequently, two electrolyte layers are deposited via physical vapor deposition. The total electrolyte thickness is less than 5 μm in an area of 5 × 5 cm2, enabling an area‐specific ohmic resistance as low as 0.125 Ω cm−2 at 500°C (under open circuit voltage), and contributing to a power density as high as 1.2 W cm−2 at 650°C (at an operating cell voltage of 0.7 V, using humidified [10 vol.% H2O] H2 as fuel and air as oxidant). This work provides an effective strategy and shows the great potential of using GDC as an electrolyte for high‐performance SOFC at intermediate temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.