Abstract
We introduce three newly designed thermally cross-linkable hole transport copolymers (PIF-TPD, PIF-F2PCz, and PIF-TPAPCz) for improving the performance of solution-processed organic light-emitting diodes (s-OLEDs). These copolymers, designed through a strategic molecular approach with benzocyclobutene (BCB) and styrene-based cross-linking monomers, show high solvent resistance at a low cross-linking temperature (150 °C). Furthermore, these conjugated copolymers based on planar indenofluorene with three different hole transport (HT) units, exhibit outstanding charge carrier mobility (1.61 × 10-2 cm2 V-1s-1), demonstrated by comparing hole reorganization energy and electronic coupling strength of HT units. Despite these copolymers showing the overall vertical orientation in the horizontal dipole moment measurement results, we demonstrated that the HT units can exhibit the preferred orientation, contributing to high hole transport properties. As a result, they perform exceptionally well as hole transport layers in green phosphorescent s-OLEDs, achieving a maximum external quantum efficiency of 15.3% and a maximum current efficiency of 53.9 cd A-1 with a small efficiency roll-off despite their relatively low triplet energy levels. These results are comparable to vacuum-deposited OLEDs, highlighting the potential of these copolymers in advancing OLED technology for display panels and lighting applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.