Abstract

Herein, the as-prepared ErMnO3/ErMn2O5/CuO/g-C3N4 nanocomposite is used for H2 storage. This product is synthesized during two steps: in-situ synthesis of ErMnO3/ErMn2O5/CuO (NC-1), and adding g-C3N4 to prepare ErMnO3/ErMn2O5/CuO/g-C3N4 nanocomposite (NC-2). ErMnO3 emerges in the form of ErMnO3/ErMn2O5 (EMO/EMMO) at calcination temperatures <1200 °C. Two-dimensional structure of EMO plays a substrate for deposition of EMMO, CuO and g-C3N4. The results show that presence of CuO has no effect on the optical property of EMO/EMMO while adding g-C3N4 affects it and of course the band gap increases by agglomeration of the particles deposited on the EMO. Changing the magnetic properties in every change-step is notable. EMO represents a ferromagnetism characteristic that is altered to paramagnetic when NC-1 is prepared, and NC-2 presents a ferromagnetism behavior. Furthermore, the results show that CuO and g-C3N4 are used as boosters to increase H2 storage capacity of EMO/EMMO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call