Abstract
CRISPR–Cas-based genome editing holds immense promise for advancing plant genomics and crop enhancement. However, the challenge of low editing activity complicates the identification of editing events. In this study, we introduce multiple single transcript unit surrogate reporter (STU-SR) systems to enhance the selection of genome-edited plants. These systems use the same single guide RNAs designed for endogenous genes to edit reporter genes, establishing a direct link between reporter gene editing activity and that of endogenous genes. Various strategies are used to restore functional reporter genes after genome editing, including efficient single-strand annealing (SSA) for homologous recombination in STU-SR–SSA systems. STU-SR–base editor systems leverage base editing to reinstate the start codon, enriching C-to-T and A-to-G base editing events. Our results showcase the effectiveness of these STU-SR systems in enhancing genome editing events in the monocot rice, encompassing Cas9 nuclease-based targeted mutagenesis, cytosine base editing, and adenine base editing. The systems exhibit compatibility with Cas9 variants, such as the PAM-less SpRY, and are shown to boost genome editing in Brassica oleracea, a dicot vegetable crop. In summary, we have developed highly efficient and versatile STU-SR systems for enrichment of genome-edited plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.