Abstract

Solid oxide electrolysis cell (SOEC) is recognized as an effective means to accomplish sustainable development since it is an efficient electrochemical technology for CO2 emission reduction. However, the electrocatalytic reduction activity of the cathode for CO2 restricts the development of SOEC. Herein, an A-site deficient perovskite Sr1·9Fe1·3Cu0·2Mo0·4Ti0·1O6-δ (SFCMT) was proposed as cathode material that can in situ exsolve uniform Cu nanoparticles. The exsolution of Cu increases the concentration of oxygen vacancies and provides abundant adsorption sites for CO2, resulting in excellent electrochemical catalytic capacity. Cu@SFCMT-based single cells exhibit excellent electrolytic performance under pure CO2, with current densities up to 3.21 A cm−2 at 1.8 V and 800 °C and interface polarization resistance (Rp) as low as 0.20 Ω cm2 at 800 °C. Furthermore, the current density changes slightly after the 140 h stability test at 1.2 V. Cu@SFCMT exhibits outstanding electrochemical activity and durability, making it a viable SOEC cathode material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call