Abstract

Currently, two-dimensional/two-dimensional (2D/2D) van der Waals heterojunctions, as novel and excellent candidates for photocatalysts, have attracted significant attention because of their fundamentally improved interfacial charge separation/transfer and massive reactive centers. Herein, novel 2D/2D Ta3N5-nanosheet/ReS2-nanosheet van der Waals heterojunction photocatalysts are rationally designed through a method combining template-assisted and solution-adsorption processes. The resultant heterojunctions exhibit enhanced interfacial charge transfer, boosted light absorption and significantly increased reaction sites for hydrogen evolution. Correspondingly, they deliver a high photocatalytic hydrogen production activity of 615 μmol g−1 h−1, which is ∼3 and ∼12 times greater than that of bare Ta3N5 nanosheets and ReS2 nanosheets, respectively, and superior to those in the most recent reports about photocatalytic water splitting on Ta3N5 material, implying their potential applications as advanced catalysts for hydrogen evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call