Abstract

An effective photocatalytic hydrogen production catalyst comprising MgTiO3/MgTi2O5/TiO2 heterogeneous belt-junctions was prepared using magnesium ions by a thermally driven doping method. The tri-phase heterogeneous junction was confirmed by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM). The as-prepared MgTiO3/MgTi2O5/TiO2 heterojunctions exhibited a very high photocatalytic hydrogen production activity (356.1 mol·g0.1gcat·h-1) and an apparent quantum efficiency (50.69% at 365 nm) that is about twice of that of bare TiO2 nanobelts (189.4 mol·g0.1gcat·h-1). Linear sweep voltage and transient photocurrent characterization as well as analysis of the electrochemical impedance spectra and Mott–Schottky plots revealed that the high photocatalytic performance is caused by the one-dimensional structure, which imparts excellent charge transportation characteristic, and the MgTiO3/MgTi2O5/TiO2 tri-phase heterojunction, which effectively drives the charge separation through the inherent electric field. This titanate-based tri-phase heterogeneous junction photocatalyst further enriches the catalyst system for photocatalytic hydrogen production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.