Abstract

Learning probability densities for natural language representations is a difficult problem because language is inherently sparse and high-dimensional. Negative sampling is a popular and effective way to avoid intractable maximum likelihood problems, but it requires correct specification of the sampling distribution. Previous state of the art methods rely on heuristic distributions that appear to do well in practice. In this work, we define conditions for optimal sampling distributions and demonstrate how to approximate them using Quadratically Constrained Entropy Maximization(QCEM). Our analysis shows that state of the art heuristics are restrictive approximations to our proposed framework. To demonstrate the merits of our formulation, we apply QCEM to matching synthetic exponential family distributions and to finding high dimensional word embedding vectors for English. We are able to achieve faster inference on synthetic experiments and improve the correlation on semantic similarity evaluations on the Rare Words dataset by 4.8%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.