Abstract

In the present study, a considerable, reproducible, and eco-friendly biological synthesis of Ag nanoparticles using Mangifera indica leaf extract as a reductant is documented. The spectroscopic characteristics of synthesized Ag nanoparticles are described by both UV-Vis and FT-IR techniques. The bandgap offsets, reactivity, and NLO properties for two flavonoids, quercetin, and taxifolin, are examined using the DFT approach. Also, a detailed comparative analysis for HOMO-LUMO interactions among quercetin and taxifolin is discussed. Results show that quercetin and taxifolin possess dipole moment (DM=4.79, 3.99 Debye) and bandgap offset (2.59, 2.98 eV). Both molecules are promising candidates as window layers for solar cells and memory switch devices. In addition, hyperpolarizability calculations show that quercetin NLO response is higher than taxifolin, which sets a revolutionary recall for NLO manufacture upgrade. Moreover, NBO and UV-Vis absorption characteristics are reported as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call