Abstract

The development of highly active and durable electrocatalysts toward the N2 reduction reaction (NRR) holds a key to ambient electrocatalytic NH3 synthesis. Herein, fluorine (F)-doped SnO2 mesoporous nanosheets on carbon cloth (F-SnO2/CC) were developed as an efficient NRR electrocatalyst. Benefiting from the combined structural advantages of mesoporous nanosheet structure and F-doping, the F-SnO2/CC exhibited high NRR activity with an NH3 yield of 19.3 μg h-1 mg-1 and a Faradaic efficiency of 8.6% at -0.45 V (vs RHE) in 0.1 M Na2SO4, comparable or even superior to those of most reported NRR electrocatalysts. Density functional theory calculations revealed that the F-doping could readily tailor the electronic structure of SnO2 to render it with improved conductivity and increased positive charge on active Sn sites, leading to the lowered reaction energy barriers and boosted NRR activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call