Abstract

AbstractThe electrochemical N2 reduction reaction (NRR) offers a promising approach for sustainable NH3 production, and modulating the structural/electronic configurations of the catalyst materials with optimized electrocatalytic properties is pivotal for achieving high‐efficiency NRR electrocatalysis. Herein, vacancy and heterostructure engineering are rationally integrated to explore O‐vacancy‐rich MoO3‐x anchored on Ti3C2Tx‐MXene (MoO3‐x/MXene) as a highly active and selective NRR electrocatalyst, achieving an exceptional NRR activity with an NH3 yield of 95.8 µg h−1 mg−1 (−0.4 V) and a Faradaic efficiency of 22.3% (−0.3 V). A combination of in situ spectroscopy, molecular dynamics simulations and density functional theory computations is employed to unveil the synergistic effect of O‐vacancies and heterostructures for the NRR, which demonstrates that O‐vacancies on MoO3‐x serve as the active sites for N2 chemisorption and activation, while the MXene substrate can further regulate the O‐vacancy sites to break the scaling relation to effectively stabilize *N2/*N2H while destabilizing *NH2/*NH3, resulting in more optimized binding affinity of NRR intermediates toward reduced energy barriers and an enhanced NRR activity for MoO3‐x/MXene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.