Abstract
In this work, we combined tissue engineering and gene therapy technologies to develop a therapeutic platform for bone regeneration. We have developed photothermal fibrin-based hydrogels that incorporate degradable CuS nanoparticles (CuSNP) which transduce incident near-infrared (NIR) light into heat. A heat-activated and rapamycin-dependent transgene expression system was incorporated into mesenchymal stem cells to conditionally control the production of bone morphogenetic protein 2 (BMP-2). Genetically engineered cells were entrapped in the photothermal hydrogels. In the presence of rapamycin, photoinduced mild hyperthermia induced the release of BMP-2 from the NIR responsive cell constructs. Transcriptome analysis of BMP-2 expressing cells showed a signature of induced genes related to stem cell proliferation and angiogenesis. We next generated 4 mm diameter calvarial defects in the left parietal bone of immunocompetent mice. The defects were filled with NIR-responsive hydrogels entrapping cells that expressed BMP-2 under the control of the gene circuit. After one and eight days, rapamycin was administered intraperitoneally followed by irradiation with an NIR laser. Ten weeks after implantation, the animals were euthanized and samples from the bone defect zone were processed for histological analysis using Masson's trichrome staining and for immunohistochemistry analyses using specific CD31 and CD105 antibodies. Samples from mice that were only administered rapamycin or vehicle or that were only NIR-irradiated showed the persistence of fibrous tissue bridging the defect. In animals that were treated with rapamycin, NIR irradiation of implants resulted in the formation of new mineralized tissue with a high degree of vascularization, thus indicating the therapeutic potential of the approach.Acknowledgements: This research was supported by grants RTI2018-095159-B-I00 and PID2021-126325OB-I00 (MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe”), by grant P2022/BMD- 7406 (Regional Government of Madrid). M.A.L-J. is the recipient of predoctoral fellowship PRE2019-090430 (MCIN/AEI/10.13039/501100011033).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.