Abstract

Bone remodeling process has been widely investigated in literature from an experimental and theoretical viewpoint. Indeed, the biological process of bone remodeling allows a continuous renewal of the microstructure over time and thus, it contributes to decrease the bone damage by repairing it. This research work aims to study the biological function’s (fbio) effects on the bone remodeling process trough bone density evolution. Parameter fbio is one of the important parameters that controls bone volume variation. The biological bone remodeling process is modeled in terms of equations describing the activity of the Basic Multi-cellular Units (BMU). We use a mathematical model to simulate damage repair, based on Garcia Aznar’s model. The results of simulation show a good match with experimental and clinical data: bone porosity decreases over time and decreases also as the biological factors increase. In the same view, the apparent density (ρa) decreases with bone volume fraction increases. We note that the governance of the evolution of bone density leads to consider the evolution of bone volume during youthful and the maturation phase with their saturation zone for adult in terms of growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call