Abstract
Bone regeneration using mesenchymal stem cells has several limitations. We investigated adipose-derived dedifferentiated fat (DFAT) cells as an alternative, and evaluated their cell proliferation rate, osteoblast differentiation, and bone regeneration ability in combination with activated platelet-rich plasma (aPRP). Rat DFATs and aPRP were isolated using ceiling culture and centrifugation, respectively. The cell proliferation rate was measured, and the cells were cultured in an osteoblast differentiation medium under varying concentrations of aPRP for 21 days and stained with Alizarin red. Gene expression was evaluated using real time polymerase chain reaction. Critical defects were implanted with DFAT seeded gelatin sponges under aPRP, and four weeks later, the bone regeneration ability was evaluated using micro-computed tomography and hematoxylin-eosin staining. The cell proliferation rate was significantly increased by the addition of aPRP. Alizarin red staining was positive 21 days after the start of induction, with significantly higher Runt-related transcription factor 2 (Runx2) and osteocalcin (OCN) expression levels than those in the controls. A 9 mm critical defect was largely closed (60.6%) after four weeks of gelatin sponge implantation with DFAT and aPRP. Therefore, materials combining DFAT cells and aPRP may be an effective approach for bone regeneration. Further research is needed to explore the long-term effects of these materials.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have