Abstract

For developing a clinically effective bone regeneration strategy, we compare the bone regeneration potential of cultured allogeneic bone marrow-derived mesenchymal stem cells (BM-MSCs) and of autologous BM-MSCs loaded onto allogeneic cancellous bone granule scaffolds. A critical-sized segmental bone defect was made at the mid-shaft of both radiuses in 19 New Zealand White rabbits (NWRs). In the experimental group, allogeneic BM-MSCs loaded onto small-sized allogeneic cancellous bone granules (300~700 um in diameter) were implanted in one side of a bone defect. In the control group, autologous BM-MSCs loaded onto allogeneic cancellous granules were grafted in the other side. Bone regeneration was assessed by radiographic evaluation at 4, 8, 12 and 16weeks post-implantation and by micro-computed tomography (micro-CT) and histological evaluation at 8 and 16weeks. The experimental groups showed lower bone quantity indices (BQIs) than the control groups at 12 and 16weeks (p < 0.05), although no significant difference was observed at 4 and 8weeks (p > 0.05). Micro-CT analysis revealed that both groups had similar mean total bone volume and other parameters including trabecular thickness, number and separation at either 8 or 16weeks. Only bone surface area revealed less area in the experimental group at 16weeks. Histological evaluation of 8-week and 16-week specimens showed similar biologic processes of new bone formation and maturation. There was no inflammatory reaction indicating an adverse immune response in both allogeneic and autologous MSC groups. In conclusion, allogeneic BM-MSCs loaded onto allogeneic cancellous bone granules had comparable bone regeneration potential to autologous BM-MSCs in a rabbit radial defect model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.