Abstract

Understanding bone fragility in young adult females with type 1 diabetes mellitus (T1DM) is of great clinical importance since the high fracture risk in this population remains unexplained. This study aimed to investigate bone health in young adult T1DM females by comparing relevant variables determined by dual-energy X-ray absorptiometry (DXA), peripheral quantitative computed tomography (pQCT) at the tibia and pQCT-based finite element analysis (pQCT-FEA) between T1DM subjects (n = 21) and age-, height- and weight-matched controls (n = 63). Tibial trabecular density (lower by 7.1%; 228.8 ± 33.6 vs 246.4 ± 31.8 mg/cm3, p = 0.02) and cortical thickness (lower by 7.3%; 3.8 ± 0.5 vs 4.1 ± 0.5 cm, p = 0.03) by pQCT were significantly lower in T1DM subjects than in controls. Tibial shear stiffness by pQCT-FEA was also lower in T1DM subjects than in controls at both the 4% site (by 17.1%; 337.4 ± 75.5 vs 407.1 ± 75.4 kN/mm, p < 0.01) and 66% site (by 7.9%; 1113.0 ± 158.6 vs 1208.8 ± 161.8 kN/mm, p = 0.03). These differences remained statistically significant after adjustment for confounding factors. No difference between groups was observed in DXA-determined variables (all p ≥ 0.08), although there was a trend towards lower aBMD at the lumbar spine in T1DM subjects than in controls after adjustment for confounders (p = 0.053). These novel findings elicited using pQCT and pQCT-FEA suggest a clinically significant impact of T1DM on bone strength in young adult females with T1DM. Peripheral QCT and pQCT-FEA may provide more information than DXA alone on bone fragility in this population. Further longitudinal studies with a larger sample size are warranted to understand the evolution and causes of bone fragility in young T1DM females.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call