Abstract

Studies of radiobiological effects in murine rodents exposed to internal radiation in the wild or in laboratory experiments require dosimetric support. The main problem of bone marrow (BM) dosimetry for bone-seeking β-emitters is dosimetric modeling, because the bone is a heterogeneous structure with complex microarchitecture. To date, there are several approaches to calculating the absorbed dose in BM, which mostly use rough geometric approximations. Recently, in the framework of studies of people exposed to 90Sr in the Urals, a new approach (SPSD) has been developed. The aim of the current study was to test for the first time the possibility of extension of the SPSD approach elaborated for humans to mice. For this, computational phantoms of femur bones of laboratory animals (C57BL/6, C57BL/6J, BALB/c, BALB/cJ) aged 5-8weeks (growing) and > 8weeks (adults) were created. The dose factors DFSr-90(BM ← TBV + CBV) to convert the Sr isotope activity concentration in a bone tissue into units of dose rate absorbed in the bone marrow were 1.75 ± 0.42 and 2.57 ± 0.93 μGyday-1 per Bqg-1 for growing and adult animals, respectively, while corresponding values for DFSr-89(BM ← TBV + CBV) were 1.08 ± 0.27 and 1.66 ± 0.67 μGyday-1 per Bqg-1, respectively. These results are about 2.5 times lower than skeleton-average DFs calculated assuming homogenous bone, where source and target coincide. The results of the present study demonstrate the possibility of application of the SPSD approach elaborated for humans to non-human mammals. It is concluded that the study demonstrates the feasibility and appropriateness of application of the SPSD approach elaborated for humans to non-human mammals. This approach opens up new prospects for studying the radiobiological consequences of red bone marrow exposure for both laboratory and wildlife mammals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call