Abstract

This research describes the preparation, characterisation and in vitro behavior of a bioactive glass ceramic containing 44.8 wt% apatite, 28.0 wt% wollastonite-2 M and 27.2 wt% of amorphous phase. The biomaterial was obtained by a specific thermal cycle process that caused the devitrification of the Ca 3(PO 4) 2–CaSiO 3 binary system's stoichiometric eutectic composition. Overall, the material combines the properties of a resorbable Si–Ca-rich glass, in addition to bioactive properties of wollastonite and apatite phases. The bioactivity of this material was studied by soaking the samples in a simulated body fluid (SFB) for 3, 7, 14 and 21 days at 36.5 °C. During the soaking, the amorphous phase and also wollastonite-2 M phase underwent steady dissolution by releasing Si and Ca ions into the SBF medium. After 7 days, a porous hydroxy-carbonate apatite (HCA) layer was formed at the SBF–glass ceramic interface. The micro-nanostructured apatite–wollastonite-2 M glass ceramics with improved mechanical properties, in comparison with the parent glass, could serve as a promising platform for hard tissue regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call