Abstract

The purpose of this work is to study the formation of hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ) on the surface of glass 48S4 with chemical composition: SiO 2 : 48%, CaO: 30%, Na 2 O: 18% and P 2 O 5 : 4% in weight ratio. This selected composition presents phosphorus contributions lower than that in Bioglass ® [Hench et al. J. Biomed. Mater. 36 , 117 (1971)] developed by L. Hench. Comparison of the kinetic formation of hydroxyapatite on the glass surfaces of these two biomaterials was made. The Material was prepared by melting and rapid quenching. It shows a bioactive character. This phenomenon is confirmed by the “in vitro” formation of hydroxycarbonate apatite (HCA) layer on the surface of glass after immersion in the Simulated Body Fluid (SBF). Before immersion in SBF, The proposed composition of glass was analyzed using several physicochemical methods like XRD, FTIR, SEM, and EDS confirming the composition and its amorphous state well. The pellets were soaked in SBF for 2 h, 1, 3, 7 and 15 days at 37 °C. The analyses of SBF after each immersion time were carried out using ICP-OES method. Results show important exchanges of ions between the surface of glass and the SBF. They revealed the formation of an amorphous CaO-P 2 O 5 - rich layer on the surface of the specimens after 1 day in the solution and a crystalline HCA layer after 3 days immersion time as will be shown by XRD, EDS and FTIR analysis. The cristallinity increases with immersion time. After 15 days immersion in SBF liquid, the specimens are still fully covered by hydroxycarbonate apatite (HCA) layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.