Abstract

The Electron Localization Function (ELF) by Becke and Edgecombe [J. Chem. Phys. {\bf 92}, 5397 (1990)] is routinely adopted as a descriptor of atomic shells and covalent bonds. Since the ELF and its related quantities find useful exploitation also in the construction of modern density functionals, the interest in complementing the ELF is linked to both the quests of improving electronic structure descriptors and density functional approximations. The ELF uses information which is available by considering parallel-spin electron pairs in single-reference many-body states. In this work, we complement this construction with information obtained by considering antiparallel-spin pairs whose short-range correlations are modeled by a density functional approximation. As a result, the approach requires only a contained computational effort. Applications to a variety of systems show that, in this way, we gain a spatial description of the bond in H$_2$ (which is not available with the ELF) together with some trends not optimally captured by the ELF in other prototypical situations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.