Abstract

A recently proposed partitioned density functional (DF) approximation (Phys. Rev. E 2003, 68, 061201) and an adjustable parameter-free version of a Lagrangian theorem-based DF approximation (LTDFA: Phys. Lett. A 2003, 319, 279) are combined to propose a DF approximation for nonuniform Lennard-Jones (LJ) fluid. Predictions of the present DF approximation for local LJ solvent density inhomogeneity around a large LJ solute particle or hard core Yukawa particle are in good agreement with existing simulation data. An extensive investigation about the effect of solvent bath temperature, solvent-solute interaction range, solvent-solute interaction magnitude, and solute size on the local solvent density inhomogeneity is carried out with the present DF approximation. It is found that a plateau of solvent accumulation number as a function of solvent bath bulk density is due to a coupling between the solvent-solute interaction and solvent correlation whose mathematical expression is a convolution integral appearing in the density profile equation of the DF theory formalism. The coupling becomes stronger as the increasing of the whole solvent-solute interaction strength, solute size relative to solvent size, and the closeness to the critical density and temperature of the solvent bath. When the attractive solvent-solute interaction becomes large enough and the bulk state moves close enough to the critical temperature of the solvent bath, the maximum solvent accumulation number as a function of solvent bath bulk density appears near the solvent bath critical density; the appearance of this maximum is in contrast with a conclusion drawn by a previous investigation based on an inhomogeneous version of Ornstein-Zernike integral equation carried out only for a smaller parameter space than that in the present paper. Advantage of the DFT approach over the integral equation is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call