Abstract

ObjectivesThis study examined the bonding performance and dentin remineralization potential of an experimental adhesive containing calcium-phosphate (Ca/P) micro-fillers, and self-etching primers doped with phosphoprotein biomimetic analogs (polyacrylic acid-(PAA) and/or sodium trimetaphosphate-(TMP)). MethodsExperimental self-etching primers doped with biomimetic analogs (PAA and/or TMP), and an adhesive containing Ca2+, PO4−3-releasing micro-fillers (Ca/P) were formulated. Sound human dentin specimens were bonded and cut into sticks after aging (24h or 6 months) under simulated pulpal pressure (20cm H2O), and tested for microtensile bond strength (μTBS). Results were analyzed using two-way ANOVA and Tukey’s test (p<0.05). Interfacial silver nanoleakage was assessed using SEM. Remineralization of EDTA-demineralized dentin was assessed through FTIR and TEM ultrastructural analysis. ResultsApplication of the Ca/P-doped adhesive with or without dentin pre-treatments with the primer containing both biomimetic analogs (PAA and TMP) promoted stable μTBS over 6 months. Conversely, μTBS of the control primer and filler-free adhesive significantly decreased after 6 months. Nanoleakage decreased within the resin-dentin interfaces created using the Ca/P-doped adhesives. EDTA-demineralized dentin specimens treated the Ca/P-doped adhesive and the primer containing PAA and TMP showed phosphate uptake (FTIR analysis), as well as deposition of needle-like crystallites at intrafibrillar level (TEM analysis). SignificanceThe use of Ca/P-doped self-etching adhesives applied in combination with analogs of phosphoproteins provides durable resin-dentin bonds. This approach may represent a suitable bonding strategy for remineralization of intrafibrillar dentin collagen within the resin-dentin interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.