Abstract

To investigate the impact of pretreatment and conditioning on shear bond strength (SBS), surface free energy (SFE) and surface roughness (SR) between polyetheretherketone (PEEK) and cold-cured polymethylmethacrylate (PMMA). PEEK substrates (Dentokeep PEEK Disc, nt-trading) were air abraded with Al2O3 particles of different grain sizes applied with varying pressure at 1) 0.2 MPa - 50 µm Al2O3; 2) 0.4 MPa - 50 µm Al2O3; 3) 0.2 MPa - 110 µm Al2O3; 4) 0.4 MPa - 110 µm Al2O3; or 5) without air abrasion (n = 172/group). Surface properties were quantified using SFE and SR (n = 10/group), and scanning electron microscope imaging (n = 2/group). Substrates were conditioned with a) Visio.link (VL, Bredent); b) Scotchbond Universal (SU, 3M Oral Care); c) Bonding Fluid (BF, Schütz Dental); or d) without conditioning (WC; n = 40/subgroup) and bonded to the polymer (Futura Jet, Schütz Dental). SBS and fracture types were determined before and after 10,000 thermal cycles (n = 20/subgroup). Univariate ANOVA, Kruskal-Wallis test, Mann-Whitney U-test, Kaplan-Meier survival estimates, and Weibull distribution were computed (p < 0.05). Ciba-Geigy tables and the chi-squared test were used to analyze fracture type distributions. An increase in particle size and pressure resulted in similar or increased SBS, Weibull characteristic strength, and Weibull moduli (p < 0.001 - 0.046). The lowest results were observed for the control group (without air abrasion), while pretreatment with 0.4 MPa - 110 µm Al2O3 presented the highest values (p < 0.001). In comparison with the other conditioning procedures, VL showed high (p < 0.001 - 0.03), and SU and WC low SBS (p < 0.001 - 0.006). Although it did not influence SFE, an increase in particle size and pressure led to an increased SR (p < 0.001). Pretreatment with 0.4 MPa - 110 µm Al2O3 can be recommended to increase bonding properties between PEEK and PMMA. Application of adhesives such as VL can enhance SBS further.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.