Abstract

Intermetallics such as the transition metal aluminides present theorists with a challenge since bonding is not well described by currently available pair or embedded atom potentials. We show that a new angularly dependent, many-body potential for the bond order has all the necessary ingredients for an adequate description. In particular, by linearizing the moment-recursion coefficient relations, a cluster expansion is derived which is applicable to any lattice and chemical ordering and which allows a derivation of the earlier ring ansatz. It can account for both the negative Cauchy pressure of cubic metals and the oscillatory behaviour across the transition metal aluminide series of the three-body cluster interaction Φ 3 .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.