Abstract
Bond wire failure, primarily wire neck breakage, in power LED devices due to thermomechanical fatigue is one of the main reliability issues in power LED devices. Currently, the standard testing methods to evaluate the device's lifetime involve time-consuming thermal cycling or thermal shock tests. While numerical or simulation methods are used as convenient and quick alternatives, obtaining data from material lifetime models with accurate reliability and without experimental fatigue has proven challenging. To address this issue, a mechanical fatigue testing system was developed with the purpose of inducing mechanical stresses in the critical region of the bond wire connection above the ball bond. The aim was to accelerate fatigue cracks at this bottleneck, inducing a similar failure mode as observed during thermal tests. Experimental investigations were conducted on Au, Cu, and Pd-coated Cu bonding wires, each with a diameter of 25 µm, using both low- and high-frequency excitation. The lifetime of the wire bond obtained from these tests ranged from 100 to 1,000,000 cycles. This proposed testing method offers material lifetime data in a significantly shorter timeframe and requires minimal sample preparation. Additionally, finite element simulations were performed to quantify the stresses at the wire neck, facilitating comparisons to conventional testing methods, fatigue test results under various operating conditions, material models, and design evaluations of the fine wire bond reliability in LED and microelectronic packages.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have