Abstract
First-principles simulated tensile tests have been performed on Fe with a P-segregated grain boundary to investigate the nature of the bond mobility mechanism in grain boundary embrittlement. The first site for bond breaking was the Fe-P bond, despite its high charge density. This is because the Fe-P bond exhibited the covalentlike characteristics of a localized bonding and the mobility of electrons was reduced. The breaking of the Fe-P bond accelerated the breaking of the Fe-Fe bond around the Fe-P bond because the Fe-P bond breaking affected the electron density of states of the Fe-Fe bond. Thus, P segregation enhanced the grain boundary embrittlement in Fe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.