Abstract

Biomechanical modeling of a finger is a challenging task especially due to excursion and gliding of tendons along bone geometry, the presence of articular cartilage between mating phalanges, nonlinear viscoelastic properties, load specific change in properties of tendons and complexity of deformable tendinous network (Winslow's rhombus) of the extensor mechanism. In this work, a bond graph model of the extensor mechanism of a finger is developed. Tendons are considered as deformable strings and assumed to pass through hooks fixed at predetermined points on rigid phalanges. This enables them to remain clinging to the phalanx surface while sliding on it, and retain network topology during the movement of phalanges. Word bond graph objects (WBGOs) are developed for dynamics of phalanges, hook–string interaction, normal reaction and frictional forces, and coupling of phalanges in rotation as well as translation, etc. Friction losses and extension of tendons due to applied load are accounted for. Study of motion and tension in tendons, joint variables, location of hooks and characteristics of individual tendons can be conveniently carried out based on the bond graph model. This has been effectively demonstrated through computer simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.