Abstract
This article proposes a surprisingly simple framework for the random generation of combinatorial configurations based on what we call Boltzmann models. The idea is to perform random generation of possibly complex structured objects by placing an appropriate measure spread over the whole of a combinatorial class – an object receives a probability essentially proportional to an exponential of its size. As demonstrated here, the resulting algorithms based on real-arithmetic operations often operate in linear time. They can be implemented easily, be analysed mathematically with great precision, and, when suitably tuned, tend to be very efficient in practice.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have