Abstract

The Bohmian trajectory method is employed to study electron diffraction in crystalline materials. It provides a fresh understanding of the process of electron diffraction, including traveling channels of electrons and formation of diffraction patterns. By combining it with the Bloch wave method, the electron trajectories can be calculated more efficiently than the traditional wave-packet propagation algorithm. Meanwhile, we propose a momentum expectation approach which is a good approximation method with even higher computational efficiency. Both methods result in intuitive and accurate electron trajectories for the simulation of the electron backscatter diffraction (EBSD) pattern. Excellent agreement has been obtained between the simulated trajectory distributions and the experimental EBSD pattern from Mo (001) at 20 kV, where the Kikuchi patterns and higher order Laue zone rings are characterized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.