Abstract

A new approach for the simulation of dynamic electron backscatter diffraction (EBSD) patterns is introduced. The computational approach merges deterministic dynamic electron-scattering computations based on Bloch waves with a stochastic Monte Carlo (MC) simulation of the energy, depth, and directional distributions of the backscattered electrons (BSEs). An efficient numerical scheme is introduced, based on a modified Lambert projection, for the computation of the scintillator electron count as a function of the position and orientation of the EBSD detector; the approach allows for the rapid computation of an individual EBSD pattern by bi-linear interpolation of a master EBSD pattern. The master pattern stores the BSE yield as a function of the electron exit direction and exit energy and is used along with weight factors extracted from the MC simulation to obtain energy-weighted simulated EBSD patterns. Example simulations for nickel yield realistic patterns and energy-dependent trends in pattern blurring versus filter window energies are in agreement with experimental energy-filtered EBSD observations reported in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call