Abstract

Recently, there has been progress in developing interior-boundary conditions (IBCs) as a technique of avoiding the problem of ultraviolet divergence in non-relativistic quantum field theories while treating space as a continuum and electrons as point particles. An IBC can be expressed in the particle-position representation of a Fock vector $\psi$ as a condition on the values of $\psi$ on the set of collision configurations, and the corresponding Hamiltonian is defined on a domain of vectors satisfying this condition. We describe here how Bohmian mechanics can be extended to this type of Hamiltonian. In fact, part of the development of IBCs was inspired by the Bohmian picture. Particle creation and annihilation correspond to jumps in configuration space; the annihilation is deterministic and occurs when two particles (of the appropriate species) meet, whereas the creation is stochastic and occurs at a rate dictated by the demand for the equivariance of the $|\psi|^2$ distribution, time reversal symmetry, and the Markov property. The process is closely related to processes known as Bell-type quantum field theories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.