Abstract
In this study, the authors first discuss the existence of Bogdanov-Takens and triple zero singularity of a five neurons neutral bidirectional associative memory neural networks model with two delays. Then, by utilising the centre manifold reduction and choosing suitable bifurcation parameters, the second-order and the third-order normal forms of the Bogdanov-Takens bifurcation for the system are obtained. Finally, the obtained normal form and numerical simulations show some interesting phenomena such as the existence of a stable fixed point, a pair of stable non-trivial equilibria, a stable limit cycles, heteroclinic orbits, homoclinic orbits, coexistence of two stable non-trivial equilibria and a stable limit cycles in the neighbourhood of the Bogdanov-Takens bifurcation critical point.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.