Abstract
AbstractThe value of big old fat fecund female fish (BOFFFFs) in fostering stock productivity and stability has long been underappreciated by conventional fisheries science and management, although Hjort (1914) indirectly alluded to the importance of maternal effects. Compared with smaller mature females, BOFFFFs in a broad variety of marine and freshwater teleosts produce far more and often larger eggs that may develop into larvae that grow faster and withstand starvation better. As (if not more) importantly, BOFFFFs in batch-spawning species tend to have earlier and longer spawning seasons and may spawn in different locations than smaller females. Such features indicate that BOFFFFs are major agents of bet-hedging strategies that help to ensure individual reproductive success in environments that vary tremendously in time and space. Even if all else were equal, BOFFFFs can outlive periods that are unfavourable for successful reproduction and be ready to spawn profusely and enhance recruitment when favourable conditions return (the storage effect). Fishing differentially removes BOFFFFs, typically resulting in severe truncation of the size and age structure of the population. In the worst cases, fishing mortality acts as a powerful selective agent that inhibits reversal of size and age truncation, even if fishing intensity is later reduced. Age truncation is now known to destabilize fished populations, increasing their susceptibility to collapse. Although some fisheries models are beginning to incorporate maternal and other old-growth effects, most continue to treat all spawning-stock biomass as identical: many small young females are assumed to contribute the same to stock productivity as an equivalent mass of BOFFFFs. A growing body of knowledge dictates that fisheries productivity and stability would be enhanced if management conserved old-growth age structure in fished stocks, be it by limiting exploitation rates, by implementing slot limits, or by establishing marine reserves, which are now known to seed surrounding fished areas via larval dispersal. Networks of marine reserves are likely to be the most effective means of ensuring that pockets of old-growth age structure survive throughout the geographic range of demersal species.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have