Abstract
Twenty-six Angus-cross cows were studied during BW loss (WL) and BW maintenance (WM) to examine the effects of elevated beta-oxidation on mRNA levels of NEFA-responsive signaling molecules in skeletal muscle. At the end of the WL and WM sampling periods, muscle biopsies were removed from the biceps femoris and mRNA levels were measured using real-time PCR. In comparison with WM, cows undergoing WL had elevated mRNA levels of carnitine palmitoyltransferase 1 (4.6-fold), fatty acid binding protein 3 (2.0-fold), and acyl-coenzyme A oxidase 1 (2.8-fold), all of which are indicators of beta-oxidation. Levels of mRNA of the NEFA-responsive signaling molecules PPAR alpha, delta, and gamma increased 2.0-fold, 2.2-fold, and 1.84-fold, respectively, during WL. Uncoupling proteins 2 and 3 also had increased mRNA (3.0-fold and 6.0-fold, respectively) during WL, but Western blot analysis found no changes in protein abundance of uncoupling protein 3. Uncoupling protein expression can be directly stimulated by elevated NEFA, potentially to protect cells from damage by lipid oxidation by-products. Thus, an increase in mRNA levels of genes involved in beta-oxidation of fatty acids and fatty acid by-products occurs during BW loss in beef cattle. These data support previous findings in nonruminants and suggest that these genes play a role in the same physiological processes in ruminants.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have