Abstract

Dry immersion is an effective and useful model for research in physiology and physiopathology. The focus of this study was to provide integrative insight into renal, endocrine, circulatory, autonomic and metabolic effects of dry immersion. We assessed if the principal changes were restored within 24 h of recovery, and determined which changes were mainly associated with immersion-induced orthostatic intolerance. Five-day dry immersion without countermeasures, and with ad libitum water intake, standardized diet and a permitted short daily rise was performed in a relatively large sample for this experiment type (14 healthy young men). Reduction of total body water derived mostly from extracellular compartment, and stabilized rapidly at the new operating point. Decrease in plasma volume was estimated at 20% - 25%. Five-day immersion was sufficient to impair metabolism with a decrease in glucose tolerance and hypercholesterolemia, but was not associated with pronounced autonomic changes. Five-day immersion induced marked cardiovascular impairment. Immediately after immersion, over half of the subjects were unable to accomplish the 20-min 70° tilt; during tilt, heart rate and total peripheral resistance were increased, and stroke volume was decreased. However, 24 hours of normal physical activity appeared sufficient to reverse orthostatic tolerance and all signs of cardiovascular impairment, and to restitute plasma volume and extracellular fluid volume. Similarly, metabolic impairment was restored. In our study, the major factor responsible for orthostatic intolerance appeared to be hypovolemia. The absence of pronounced autonomic dysfunction might be explained by relatively short duration of dry immersion and daily short-time orthostatic stimulation.

Highlights

  • Water immersion has been demonstrated as an efficient and useful model for renal, neuro-hormonal and body fluid physiology [1,2,3]

  • Body Fluids Plasma volume changes determined by Hb and Hct count, and by Hct count alone, were similar

  • On the second recovery day, plasma volume as determined by all 3 methods did not differ from baseline (Figure 3)

Read more

Summary

Introduction

Water immersion has been demonstrated as an efficient and useful model for renal, neuro-hormonal and body fluid physiology [1,2,3]. The water immersion method is generally limited to several hours because of skin maceration. This method has been modified to separate the subject from water using elastic tissue (dry immersion, DI), which allows for longer immersion periods and increased comfort for the subjects [4] (Figure 1). It becomes possible to study the effects of a new body fluid steady state on major bodily functions. DI allows for studying of acute expansion of central volume (first hours), maintained hypovolemic state (continuation of DI for days), and acute diminution of central volume (immediate recovery).

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.