Abstract
The increased consumption of plastics worldwide, has led to the emergence of nanoplastics as important environmental pollutants. Despite the presence of nanoplastics in aquatic environments, their effects on ecosystems remain largely unexplored due to the analysis complexity. This study investigated the organ accumulation and toxic effects of 50 nm polystyrene nanoplastics (PS-NPs) in Zacco platypus (Z. platypus; also known as pale chub fish) using pyrolyzer-gas chromatography-mass spectrometry (Pyr-GC/MS). PS-NPs accumulated in Z. platypus’ brain, digestive tract, branchia, and liver, causing changes at cellular level. Over a 14-day exposure, the accumulated PS-NPs led to observable changes in fish behavior (e.g., Total traveled distance and maximum velocity). In addition, the oxidative stress in each organ of Z. platypus increased as the exposure concentration of PS-NPs increased. This study shows that accumulation of nanoplastics in fish, resulting in behavioral changes and biochemical toxicity. As the pattern of change magnifies with exposure time and concentration, from a long-term perspective, the influence of nanoplastics on aquatic ecosystems become evident. This underscores the urgency for continuous research into the potential risks of nanoplastics in aquatic ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.