Abstract

Multiple water-chemistry factors determine nanoplastics aggregation and thus change their bioavailability and ecological risks in natural aquatic environments. However, the dominant factors and their interactive mechanisms remain elusive. In this study, polystyrene nanoplastics (PSNPs) showed greater colloidal stability in Li Lake water compared to ultrapure water. The RDA and PARAFAC results suggested that dissolved organic carbon, humic acid (HA) in particular, Ca2+, and pH are critical factors influencing PSNPs aggregation. Batch experiments showed that the critical coagulation concentration (CCC) of PSNPs was increased with pH increase; HA increased the CCC of PSNPs in NaCl by 2.6-fold but decreased that in CaCl2 by 1.8-fold. Moreover, cations increased the adsorption of HA on PSNPs. The DFT results suggested that HA-cations complexes (EAE = −1.10 eV and −0.51 eV for HA-Ca2+ and HA-Na+, respectively) but not HA alone (EAE = −0.33 eV) are the main scenarios for their adsorption on PSNPs, and a cation-π mechanism between PSNPs and HA-cations complexes dominates PSNPs aggregation in this scenario. The findings are significant for better understanding the environmental process and fate of nanoplastics in aquatic environments. Environmental implicationNanoplastics are kinds of emerging contaminants. Nanoplastic aggregation determines their bioavailability and toxic risks to ecological health. Herein, the hydrodynamic sizes of PSNPs in local Li Lake water was tested and a redundancy analysis was performed to examine the key water-chemistry factors driving PSNPs aggregation. Moreover, the mechanisms in PSNPs aggregation driven by multiple dominant water-chemistry factors including cations, pH, and DOC were firstly unveiled by combining experimental characterization and theoretical computations. This work improves our understanding of the environmental fate of nanoplastics and provides a theoretical basis for the risk assessment and control of nanoplastics in real aquatic environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.