Abstract

The purpose of this study was to investigate the effects of BOC on glioblastoma cells and its underlying mechanisms. In vitro, BOC-knockdown was performed in glioma cell lines. CCK-8 and Transwell were used to assess the impact of BOC on the viability, invasion, and migration of gliobma cells. RNA-seq technology was employed to analyze the differential gene expression between BOC-knockdown glioma cells and the control group, and qRT-PCR was used to validate the expression of downstream differential genes. SMO-overexpression was performed to investigate the effects of SMO on glioma cells. A BOC-knockdown mouse subcutaneous tumor model was to verify the effects of BOC on mouse tumors. Tissue microarray technology was used to detect the expression of BOC and SMO in samples of normal human brain tissue and glioma tissue. In vitro, BOC-knockdown inhibited the viability, invasion, and migration of glioma cells, as well as downregulated the expression of downstream differential genes SMO, EGFR, HRAS, and MRAS. Conversely, SMO-overexpression upregulated the viability, invasion, and migration abilities of BOC-knockdown cells. In vivo, BOC-knockdown suppressed tumor growth in mice and downregulated the expression of downstream differential genes SMO, EGFR, HRAS, and MRAS. Tissue microarray results showed that both BOC and SMO were highly expressed in glioma tissues. BOC is aberrantly overexpressed in glioma patients and promotes glioma development. Mechanistically, BOC activates the Hedgehog (Hh) and RAS signaling pathways by upregulating the expression of SMO, EGFR, HRAS, and MRAS, thereby facilitating the Proliferation, invasion and migration of glioma cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.