Abstract

This study investigated individual boar variability in the quality of pre-freeze (PF) and post-thaw (PT) semen cooled in different long-term (LT) extenders and for different holding times (HT). Sperm rich fractions were diluted with Androhep® Plus (AHP), Androstar® Plus (ASP), Safecell® Plus (SCP) and TRIXcell® Plus (TCP) extenders, stored for 2h at 17°C (HT 1) and additionally for 24h at 10°C (HT 2) and the samples were subsequently evaluated and frozen. Besides the analysis of CASA sperm variables, mitochondrial membrane potential (MMP), plasma membrane integrity (PMI), normal apical ridge (NAR) acrosome integrity, and viability (YO-PRO-1−/PI−) of sperm were assessed in the PF and PT semen. Results indicated that boar, extender and HT group affected the sperm quality characteristics. There were great variations in PMOT and the sperm motion patterns of the PF semen among the boars. Differences in the HT groups of the PF semen, with respect to the sperm membrane integrity, were less marked among the boars. Consistent variations in TMOT and PMOT in the PT semen were observed among the boars, being greater in the HT 2 group. Most of the CASA-analyzed sperm motion patterns were greater in the HT 2 group of the PT semen. Furthermore, sperm MMP, PMI and viability were greater in the HT 2 group of the PT semen in most of the boars, while consistent differences were observed among the boars for sperm NAR acrosome integrity in either HT group. The significant effect of the cryopreservation process on the sperm membrane proteome was evident from the number of protein bands, detected in the electrophoretic profiles of sperm of the HT 1 and HT 2 groups. The electrophoretic profiles of the PF and PT semen among boars with poor and good semen freezability, however, differed with respect to the abundance and types of sperm membrane-associated proteins. The overall results of this study provided evidence that there are differences among boars in response to the different cooling regimens, and that cooling of extended semen for a 24-h period at 10°C modulated the functions of sperm in an extender-dependent manner, rendering the cells less susceptible to cryo-induced damage. It is suggested that the findings of this study have the potential to improve the technology of boar semen cryopreservation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call