Abstract
Bénard-von Kármán vortex street in dipolar Bose-Einstein Condensate (BEC) trapped by a square-like potential is investigated numerically. In the frame of mean-field theory, the nonlinear dynamic of the dipolar BEC can be described by the so-called two-dimensional Gross-Pitaevskii (GP) equation with long-range interaction. In this paper, we only consider the case that all the dipoles are polarized along the <i>z</i>-axis, which is perpendicular to the plane of disc-shaped BEC. Firstly, the stationary state of the BEC is obtained by the imaginary-time propagation approach. Secondly, the nonlinear dynamic of the BEC, when a moving Gaussian potential exists in such a system, is numerically investigated by the time-splitting Fourier spectral method, in which the stationary state obtained before is set to be the initial state. The results show that when the velocity of the cylindrical obstacle potential reaches a critical value, which depends on interaction strength and the shape of the potential, the vortex-antivortex pairs will be generated alternately in the super-flow behind the obstacle potential. However, in general, such a vortex-antivortex pair structure is dynamically unstable. When the velocity of the obstacle potential increases to a certain value and for a suitable potential width, a stable vortex structure called Bénard-von Kármán vortex street will be formed. While this phenomenon emerges, the vortices in pairs created by the obstacle potential have the same circulation. The pairs with opposite circulations are alternately released from the moving obstacle potential. For larger potential width and velocity, the shedding pattern becomes irregular. We also numerically investigate the effects of the dipole interaction strength, the width and the velocity of the obstacle potential on the vortex structures arising in the wake flow. As a result, the phase graph is presented by lots of numerical calculations for a group of given physical parameters. Thirdly, the drag force on the obstacle potential is also calculated and the mechanical mechanism of vortex pair is analyzed. Finally, we discuss how to find the phenomenon of Bénard-von Kármán vortex street in dipolar BEC experimentally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.