Abstract

Hexagonal boron nitride (h-BN) presents an excellent thermal conductivity and the outstanding insulating property for electronic packaging. However, a traditional method can enhance the thermal conductivity of the composites by melt mixing fillers and polymers usually leading to composites with limited thermal conductivity. Here, BN@PPS (Polyphenylene sulfide) core-shell structure particles and their composites with the 3D segregated architecture are presented. The composite achieves a high thermal conductivity of 4.15 W/mK containing 40 vol% BN, which is 16 times higher than that of PPS resin of ∼0.25 W/mK and 1.69 times higher than that PPS/BN blend composite with at the same BN loading of 2.45 W/mK. The outstanding thermally conductive property of segregated architecture PPS/BN composite is attributed to the formation of BN flakes networks in the PPS matrices, which can provide effective thermal conductive pathway. This segregated architecture composite is an optimal material for insulating electronic packaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.