Abstract

Polyphenylene sulfide (PPS) is a promising engineering polymer, which is used for various industrial applications. In this study, we developed a highly thermally conductive PPS composite containing boron nitride (BN) as a thermally conductive ceramic filler. (3‐Aminopropyl) triethoxysilane was doped onto the surface of hydroxyl‐functionalized BN using a simple sol–gel process. The modified BN particles were embedded in a PPS matrix via a melt mixing process using a twin extruder to form BN‐Si composites. The maximum thermal conductivity 3.09 W/m·K was exhibited by the surface‐modified BN‐Si containing 60 wt%. This value was 116% higher than the thermal conductivities of the pristine BN and PPS matrix, respectively. The surface‐treated composites also showed an improved storage modulus because of an improvement in the interfacial adhesion and interaction between the BN filler and the PPS matrix. Copyright © 2017 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.