Abstract

AbstractAcute anemia initiates a systemic response that results in the rapid mobilization and differentiation of erythroid progenitors in the adult spleen. The flexed-tail (f) mutant mice exhibit normal steady-state erythropoiesis but are unable to rapidly respond to acute erythropoietic stress. Here, we show that f/f mutant mice have a mutation in Madh5. Our analysis shows that BMP4/Madh5-dependent signaling, regulated by hypoxia, initiates the differentiation and expansion of erythroid progenitors in the spleen. These findings suggest a new model where stress erythroid progenitors, resident in the spleen, are poised to respond to changes in the microenvironment induced by acute anemia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.