Abstract

Erythropoietin (Epo) and stem cell factor (SCF) are essential factors in the control of survival, expansion and differentiation of erythroid progenitors. Upon activation, their receptors, the EpoR and c-Kit, initiate multiple signalling pathways that control many cellular processes. To control erythropoiesis, the strength, duration and specificity of signalling must be tightly controlled. Negative feed-back regulation is extensively studied, but positive feed-forward control is relatively little studied. The cytoplasmic tyrosine kinase Bruton’s tyrosine kinase (Btk) was found to be phosphorylated by Jak2 in response to Epo and appeared to be required for fast and efficient phosphorylation of Epo-induced targets including the EpoR itself and downstream targets such as PLC? and Stat5. Erythroid progenitors deficient in Btk fail to undergo renewal divisions and differentiate instead at low, physiologic concentrations of Epo and SCF. In addition, Btk is phosphorylated by SCF, which causes association of Btk with TRAIL-receptor1. In absence of Btk, erythroid progenitors are hypersensitive to TRAIL. Thus, Btk modulates signalling in erythroid progenitors to enhance expansion of erythroid progenitors. The complexity of signalling by the EpoR/c-Kit signalosome and its control by Btk is discussed with respect to normal and aberrant erythropoiesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.