Abstract
We have recently shown that human recombinant BMP-6 (rhBMP-6), given systematically, can restore bone in animal models of osteoporosis. To further elucidate the underlying mechanisms of new bone formation following systemic application of BMPs, we conducted gene expression profiling experiments using bone samples of oophrectomised mice treated with BMP-6. Gene set enrichment analysis revealed enrichment of insulin-like growth factor-I and epidermal growth factor related pathways in animals treated with BMP-6. Significant upregulation of IGF-I and EGF expression in bones of BMP-6 treated mice was confirmed by quantitative PCR. To develop an in vitro model for evaluation of the effects of BMP-6 on cells of human origin, we cultured primary human osteoblasts. Treatment with rhBMP-6 accelerated cell differentiation as indicated by the formation of mineralised nodules by day 18 of culture versus 28-30 days in vehicle treated cultures. In addition, alkaline phosphatase gene expression and activity were dramatically increased upon BMP-6 treatment. Expression of IGF-I and EGF was upregulated in human osteoblast cells treated with BMP-6. These results collectively indicate that BMP-6 exerts its osteoinductive effect, at least in part, through IGF-I and EGF pathways, which can be observed both in a murine model of osteopenia and in human osteoblasts.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have