Abstract

The usual one third trick allows to reduce problems involving general cubes to a countable family. Moreover, this covering lemma uses only dyadic cubes, which allows to use nice martingale properties in harmonic analysis problems. We consider alternatives to this technique in spaces equipped with nonhomogeneous measures. This entails additional difficulties which force us to consider martingale filtrations that are not regular. The dyadic covering that we find can be used to clarify the relationship between martingale BMO spaces and the most natural BMO space in this setting, which is the space RBMO introduced by Tolsa.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.