Abstract

Blur identification is a crucial first step in many image restoration techniques. An approach for identifying image blur using vector quantizer encoder distortion is proposed. The blur in an image is identified by choosing from a finite set of candidate blur functions. The method requires a set of training images produced by each of the blur candidates. Each of these sets is used to train a vector quantizer codebook. Given an image degraded by unknown blur, it is first encoded with each of these codebooks. The blur in the image is then estimated by choosing from among the candidates, the one corresponding to the codebook that provides the lowest encoder distortion. Simulations are performed at various bit rates and with different levels of noise. Results show that the method performs well even at a signal-to-noise ratio (SNR) as low as 10 dB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.