Abstract

Most learning-based super-resolution methods neglect the illumination problem. In this paper we propose a novel method to combine blind single-frame super-resolution and shadow removal into a single operation. Firstly, from the pattern recognition viewpoint, blur identification is considered as a classification problem. We describe three methods which are respectively based on Vector Quantization (VQ), Hidden Markov Model (HMM) and Support Vector Machines (SVM) to identify the blur parameter of the acquisition system from the compressed/uncompressed low-resolution image. Secondly, after blur identification, a super-resolution image is reconstructed by a learning-based method. In this method, Logarithmic-wavelet transform is defined for illumination-free feature extraction. Then an initial estimation is obtained based on the assumption that small patches in low-resolution space and patches in high-resolution space share a similar local manifold structure. The unknown high-resolution image is reconstructed by projecting the intermediate result into general reconstruction constraints. The proposed method simultaneously achieves blind single-frame super-resolution and image enhancement especially shadow removal. Experimental results demonstrate the effectiveness and robustness of our method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.