Abstract

Objective. The liver is frequently injured in blunt abdominal trauma caused by road traffic accidents. The testing of safety performance of vehicles, e.g. belt usage, head support, seat shape, or air bag shape, material, pressure and reaction, could lead to reduction of the injury seriousness. Current trends in safety testing include development of accurate computational human body models (HBMs) based on the anatomical, morphological, and mechanical behavior of tissues under high strain. Approach. The aim of this study was to describe the internal pressure changes within porcine liver, the severity of liver injury and the relation between the porcine liver microstructure and rupture propagation in an experimental impact test. Porcine liver specimens (n = 24) were uniformly compressed using a drop tower technique and four impact heights (200, 300, 400 and 500 mm; corresponding velocities: 1.72, 2.17, 2.54 and 2.88 m s−1). The changes in intravascular pressure were measured via catheters placed in portal vein and caudate vena cava. The induced injuries were analyzed on the macroscopic level according to AAST grade and AIS severity. Rupture propagation with respect to liver microstructure was analyzed using stereological methods. Main results. Macroscopic ruptures affected mostly the interface between connective tissue surrounding big vessels and liver parenchyma. Histological analysis revealed that the ruptures avoided reticular fibers and interlobular septa made of connective tissue on the microscopic level. Significance. The present findings can be used for evaluation of HBMs of liver behavior in impact situations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.